Sodium Lauryl Sulfate: Dispelling Safety Concerns

Surfactants Info: Applications & Advantages in Day-to-day Life

What is a surfactant?
Sodium Lauryl Sulfate, also referred to as surfactants, are compounds that can significantly decrease the surface tension or interfacial tension between two liquids, between liquids and gases, and between liquids and solids. The molecular structure of surfactants is amphoteric: hydrophilic group at one end, hydrophobic group at the opposite end; hydrophilic groups are often polar groups, like carboxylic acid, sulfonic acid, sulfuric acid, amino or amine groups as well as their salts, hydroxyl, amide, ether bonds, etc., can also be used as polar hydrophilic groups; and hydrophobic groups tend to be nonpolar hydrocarbon chains, like hydrocarbon chains of over eight carbon atoms. Surfactants are divided into ionic surfactants (including cationic surfactants, anionic surfactants, and amphoteric surfactants), nonionic surfactants, complex surfactants, and other surfactants.
Overview of surfactants
Surfactants really are a class of chemical substances with a special molecular structure, which usually contain hydrophilic and hydrophobic groups. This amphiphilic nature enables surfactants to form interfaces between water and other immiscible liquids and reduce interfacial tension, thus playing the roles of wetting, emulsifying, dispersing, solubilizing, foaming, defoaming and so forth.
Types of surfactants
Surfactant is really a special chemical substance that will significantly decrease the surface tension of the solvent in a really low concentration, thus changing the interfacial state of the system. This substance usually has both hydrophilic and lipophilic properties and can play a bridge role between two immiscible liquids, water and oil, therefore it is also known as an amphiphilic molecule.
Surfactants have a wide range of applications in lots of fields, like daily life, industrial production, and scientific research. According to their different chemical structures and properties, surfactants could be split into two classes: ionic and nonionic. Ionic surfactants could be further divided into cationic, anionic, and amphoteric types.
Ionic surfactants
Anionic surfactants
Anionic surfactants would be the most generally used and many widely produced surfactants. Common anionic surfactants include salts of essential fatty acids, sulfonates, sulfate salts and phosphate salts. They may have good detergency, emulsification, dispersion, solubilization, and other properties and therefore are widely used in detergents, cosmetics, textiles, printing and dyeing, petroleum, pharmaceutical, and other industries.
Cationic surfactants
Cationic surfactants are generally nitrogen-containing organic amine derivatives with good bactericidal, antistatic and softening properties. Because of their good softness and antistatic properties on fabrics, they are often used as post-treatment agents, softeners, antistatic agents and sterilizers for textiles.
Amphoteric ionic surfactants
Amphoteric ionic surfactants have both good and bad charge groups within the molecule and show different charge properties at different pH values. These surfactants have excellent foaming, low irritation, good compatibility, and bactericidal properties and are commonly used in detergents, cosmetics, medicine, and other fields.
Nonionic surfactants
Nonionic surfactants do not dissociate into ions in water and appear in solution in the form of neutral molecules or micro ions. These surfactants are highly stable, not easily affected by strong electrolytes and, acids and bases, and therefore are compatible with other types of surfactants. Common nonionic surfactants include polyethylene glycol type, polyol type, fluorinated surfactants and silicone type. They may be commonly used in detergents, emulsifiers, dispersants, wetting agents and so forth.
Examples of surfactants:
Ionic surfactants
Anionic surfactants: e.g. sodium fatty acids, alkyl sulfates, etc.
Cationic surfactants: e.g. quaternary ammonium salts, amine salts, etc.
Amphoteric ionic surfactants: e.g. amino acid type, betaine type, etc.
Nonionic surfactants
Polyoxyethylene ether type: like fatty alcohol polyoxyethylene ether.
Polyol type: e.g. glycerol ester, sorbitol ester, etc.
Amine oxide type: such as dimethylamine oxide, etc.
Special types of surfactants
Polymer surfactants: surfactants with higher molecular chain structure.
Bio-surfactants: such as phospholipids, glycolipids as well as other surfactants of natural biological origin.
What are the main functions of surfactants?
(1) Emulsification: Due to the large surface tension of grease in water, when grease is dripped in to the water and stirred vigorously, the grease will be crushed into fine beads and mixed to create an emulsion, but the stirring will stop and re-layering will require place. In the event you add surfactant and stir hard, it does not be easy to stratify for a long period after stopping, the emulsification effect. This is because the hydrophobicity of the grease is surrounded by hydrophilic teams of surfactant, forming a directional attraction, reducing the oil in the water dispersion of the work needed to create the grease emulsification is very good.
(2) Wetting effect: Parts often adhere to the surface of the layer of wax, grease, or scale-like substances, which are hydrophobic. Due to the pollution of those substances, the surface from the parts can be difficult to wet with water. When adding surfactants towards the water solution, the water droplets around the parts will be easily dispersed so that the surface tension of the parts is greatly reduced to achieve the reason for wetting.
(3) solubilizing effect: oil substances in the addition of surfactant to be able to dissolve, but this dissolution could only occur when the power of surfactant reaches the critical power of colloid, the size of the solubility based on solubilizing objects and properties to determine. When it comes to solubilization, the long hydrophobic gene hydrocarbon chain is stronger compared to the short hydrocarbon chain, the saturated hydrocarbon chain is stronger compared to the unsaturated hydrocarbon chain, and the solubilization effect of nonionic surfactants is generally more significant.
(4) Dispersing effect: Dust, dirt, and other solid particles are simple to gather together and settle in water; surfactant molecules could make solid particle aggregates divided into small particles so they are dispersed and suspended within the solution and be involved to advertise the uniform dispersion of solid particles.
(5) Foam effect: the formation of foam is primarily the directional adsorption of active agent, is definitely the gas-liquid two-phase surface tension reduction caused by. Generally, the low molecular active agent is simple to foam, high molecular active agent foam less, cardamom acid yellow foam is the highest, sodium stearate foam is definitely the worst, anionic active agent foam and foam stability than nonionic good, such as sodium alkyl benzene sulfonate foam is extremely strong. Usually used foam stabilizers are fatty alcohol amide, carboxymethyl cellulose, etc. Foam inhibitors are fatty acids, fatty acid esters, polyethers, etc. and other nonionic surfactants.
Application of surfactants
Surfactants have an array of applications, almost covering our daily life and other industrial production fields. The following are some of the main applications of surfactants:
Detergents and cosmetics: Surfactants are important ingredients in detergents and cosmetics, like laundry detergents, liquid detergents, shampoos, shower gels, moisturizing lotions and so on. They reduce the surface tension of water, making it simpler for stains to become removed from the surface of objects while providing a wealthy lather and lubricating sensation.
Textile industry: Within the textile industry, surfactants are used as softeners, wetting agents, antistatic agents, dispersants, leveling agents and, color fixing agents, etc., which assist in improving the caliber of textiles and improve the uniformity of dyeing and color vividness.
Food industry: Surfactants can be used emulsifiers, dispersants, wetting agents, defoamers, etc., in the manufacture of dairy foods, beverages, confectionery, as well as other food products to improve their stability and taste.
Agriculture and pesticides: In agriculture, surfactants can improve the wetting and dispersion of pesticides, thus improving their insecticidal effect. They may also be used as soil conditioners to improve soil water retention and permeability.
Petroleum industry: In the process of oil extraction and processing, surfactants can be used as emulsion breakers, oil repellents, anti-waxing agents, and enhancement of recovery, etc., which assist in improving the efficiency of oil extraction and processing.
Pharmaceutical industry: In the pharmaceutical industry, surfactants can be used to prepare emulsions, suppositories, aerosols, tablets, injections, etc., playing the role of emulsification, solubilization, wetting, dispersion and penetration.
In addition, surfactants play an important role in many industries, such as construction, paint, paper, leather, and metal processing. Their application during these fields is mainly realized by improving product processing performance, enhancing product quality, and reducing production costs.
Top quality factory price surfactant supplier in China
Luoyang Trunnano Tech Co., Ltd (TRUNNANO) is professional in cladding of metal solutions for 10 years , which is actually a professional company with supply and marketing integration.
We provides different kinds of surfactants, such as anionic surfactants, sodium lauryl sulfate, sodium laureth sulfate, sodium lauroyl sarcosinate,etc.
The business features a professional technical department and Quality Supervision Department, a properly-equipped laboratory, and built with advanced testing equipment and after-sales customer service center. Send us an email to [email protected].

This entry was posted in Business. Bookmark the permalink.